如图,△ABC三内角平分线交于点O,过点O引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.

如图,△ABC三内角平分线交于点O,过点O引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.

题目
如图,△ABC三内角平分线交于点O,过点O引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.
作业帮
答案
作业帮证明:∵AO平分∠BAC,DE⊥AO,
∴∠DAO=∠EAO.
在△ADO和△AEO中,
∠DAO=∠EAO
AO=AO
∠AOD=∠AOE

∴△ADO≌△AEO(ASA),
∴∠ADO=∠AEO,
∴∠BDO=∠OEC=90°+
1
2
∠BAC,
∴∠BOC=90°+
1
2
∠BAC,
∴∠BDO=∠OEC=∠BOC,
∵O是△ABC的内角平分线的交点,
∴∠1=∠2,
∴△DBO∽△OBC,
同理可得出:△BOC∽△OEC,
∴△DBO∽△EOC,
∴△BOD∽△BCO∽△OCE.
首先证明△ADO≌△AEO(ASA),进而得出∠BDO=∠OEC=∠BOC,即可得出△DBO∽△OBC,再求出△BOC∽△OEC,△DBO∽△EOC,即可得出答案.

相似三角形的判定.

此题主要考查了相似三角形的判定与性质和全等三角形判定与性质,根据已知得出∠BDO=∠OEC=∠BOC是解题关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.