求和Sn=(x+1/y)+(x^2+1/y^2)+...+(x^n+1/y^n)
题目
求和Sn=(x+1/y)+(x^2+1/y^2)+...+(x^n+1/y^n)
x不等于0,1 Y不等于1
答案
很简单啊!这可以拆分成两个等比数列求和
Sn=(x+x^2+...+x^n)+(1/y+1/y^2+...+1/y^n)=S1+S2
S1=x(1-x^n)/(1-x);S2=1/y(1-1/y^n)/(y-1)=(1-1/y^n)/y=(y^n-1)/(y^(n+1)-y^n)
所以Sn=x(1-x^n)/(1-x)+(y^n-1)/(y^(n+1)-y^n)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点