p(x)是不可约多项式,如果p(x)整除f(x),g(x)整除f(x),当p(x)不能整除g(x),证明p(x)g(x)整除f(x)

p(x)是不可约多项式,如果p(x)整除f(x),g(x)整除f(x),当p(x)不能整除g(x),证明p(x)g(x)整除f(x)

题目
p(x)是不可约多项式,如果p(x)整除f(x),g(x)整除f(x),当p(x)不能整除g(x),证明p(x)g(x)整除f(x)
答案
由g整除f,设f=r(x)g(x)
因为p不可约切不能整除g,故两者互素
从而p只能整除r(x),设r(x)=p(x)s(x)
于是f=s(x)pg
即pg整除f
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.