如图,在矩形ABCD中,点E在AD上,EC平分∠BED. (1)△BEC是否为等腰三角形?为什么? (2)已知AB=1,∠ABE=45°,求BC的长.

如图,在矩形ABCD中,点E在AD上,EC平分∠BED. (1)△BEC是否为等腰三角形?为什么? (2)已知AB=1,∠ABE=45°,求BC的长.

题目
如图,在矩形ABCD中,点E在AD上,EC平分∠BED.

(1)△BEC是否为等腰三角形?为什么?
(2)已知AB=1,∠ABE=45°,求BC的长.
答案
(1)△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45...
(1)求出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)求出AE=AB=1,根据勾股定理求出BE即可.

矩形的性质;等腰三角形的判定.

本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用,主要考察学生的推理能力,题目比较好,难度适中.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.