设函数f(x)=sin(πx/3-π/6)-2(cosπx/6)^2.
题目
设函数f(x)=sin(πx/3-π/6)-2(cosπx/6)^2.
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图像关于直线x=2对称;求当x∈[0,1]时,函数y=g(x)的最大值.
答案
f(x)=sin(πx/3-π/6)-[cos(πx/3)+1]
=sin(πx/3)cos(π/6)-cos(πx/3)sin(π/6)-cos(πx/3)-1
=(√3/2)sin(πx/3)-(3/2)cos(πx/3)-1
=√3sin(πx/3-π/3)-1
1、函数f(x)的最小正周期是2π/(π/3)=6,增区间:2kπ-π/2≤πx/3-π/3≤2kπ+π/2
6k-1/2≤x≤6k+5/2
即增区间是[6k-1/2,6k+5/2],其中k是整数.
2、y=g(x)与y=f(x)关于x=2对称,则g(x)=f(4-x)=√3sin(πx/3)-1,其中x∈[0,1],则:
(πx/3)∈[0,π/3],则g(x)的最大值是g(1)=√3sin(π/3)-1=1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点