命题P:方程x2/(k-4)-y2/(k-2)=1表示双曲线,命题q:方程x2/(k-1)+y2/(5-k)表示的是焦点在x轴上的椭圆.若p或q为真命题,且p且q为假命题,求实数k的取值范围
题目
命题P:方程x2/(k-4)-y2/(k-2)=1表示双曲线,命题q:方程x2/(k-1)+y2/(5-k)表示的是焦点在x轴上的椭圆.若p或q为真命题,且p且q为假命题,求实数k的取值范围
答案
P:(k-4)(k-2)<0,得到2
Q:k-1>0,5-k>0,k-1>5-k,得到3
p或q为真命题,且p且q为假命题,则有P和Q为一真一假
(1)P真Q假,则有2
=5,即有2(2)P假Q真,则有k<=2,k>=4,3综上所述,范围是2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点