如果双曲线x2a2−y2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是( ) A.(1,2] B.(2,+∞) C.(1,2) D.[2,+∞)
题目
如果双曲线
−=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是( )
A. (1,2]
B. (2,+∞)
C. (1,2)
D. [2,+∞)
答案
设双曲线右支任意一点坐标为(x,y)则x≥a,
∵到右焦点的距离和到中心的距离相等,由两点间距离公式:x
2+y
2=(x-c)
2+y
2得x=
,
∵x≥a,∴
≥a,得e≥2,
又∵双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,所以不能等于2
故选B
先设出双曲线右支任意一点坐标,根据到右焦点的距离和到中心的距离相等,利用两点间距离公式建立等式求得x,进而利用x的范围确定a和c的不等式关系,进而求得e的范围,同时根据双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,所以不能等于2,最后综合求得答案.
双曲线的简单性质.
本题主要考查了双曲线的简单性质.解题的关键是求得a和c的不等式关系,考查了学生转化和化归的思想.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点