三道数学题,有关概率和多面体的
题目
三道数学题,有关概率和多面体的
1.将1、2……9这9个数平均分成三组,则每组的三个数都称等差数列的概率为?
2.A袋中后红球白球若干,摸出红球的概率是1/3,则从A中又放回的摸球,每次摸一个,共摸5次,恰好有3次摸到红球的概率?
3.四面体的一条棱长是x,其余各条棱是1,(1)把四面体的体积V表示成x的函数(2)求V的值域 (3)求V的单调区间
1/56
40/243
(x/12)√(3-x^) (0,1/8] 增:(0,√6/2] 减:[√6/2,√3)
答案
1.符合条件的分法有五种:
1、2、3;4、5、6;7、8、9
1、2、3;4、6、8;5、7、9
1、3、5;2、4、6;7、8、9
1、4、7;2、5、8;3、6、9
1、5、9;2、3、4;6、7、8
所有分法的总数N=C9'3*C6'3/(C3'1*C2'1)=280
概率P=5/280=1/56
2.等概率事件问题
P=C5'3*(1/3)^3*(2/3)^2=40/243
3.(1)长度x的棱中点和相对的棱所在平面把四面体分为两个四面体
体积都等于V'=(1/3)*((1/2)*x*((√3-x^2)/2)*(1/2)=(x/24)*(√3-x^2) ("√"到所在括号尾)
总体积V=(x/12)*(√3-x^2) 定义域(0,√3)
(2)V=(x/12)*(√3-x^2)
=(√3x^2-x^4)/12
=(√(9/4-(x^4-3x^2+9/4)))/12
=(√(9/4-(x^2-3/2)^2))/12
<=(√9/4)/12=1/8
所以值域(0,1/8]
(3)V=(√(9/4-(x^2-3/2)^2))/12
所以x^2在(0,3/2]单调递增,[3/2,3)单调递减
因为x>0
所以x在(0, √6/2] 单调递增,[√6/2,√3)单调递减
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 如题,形容程序太多太繁琐的词语或者成语有哪些,知道麻烦告知一声,
- 按照合理的排列顺序排列下列词语
- 一个圆柱形水桶,若将高改为原来的一半,底面直径改为原来的2倍,可装水40千克,那么原来的水桶可装水多少
- 作文:()不容易
- 等待黑暗 英文怎么写
- 一张长和宽分别是130厘米和110厘米的长方形铁皮,在它的四个角各剪去一个边长为20厘米的小正方体,然后焊接
- 一筐梨连筐共重26千克,卖出梨的一半后,剩下的梨连筐共重14千克,原来有梨多少千克?筐有多重?
- 一只猫追一只老鼠,老鼠.
- 一列士兵队伍正以某一速度v做匀速直线运动,因有紧急情况需通知排头兵,一通信员以恒定速率跑步从队尾赶到排
- Which of the two pencils are yours?