微分几何证明题
题目
微分几何证明题
向量函数r(t)具有固定方向的充要条件是r×r'=0.
答案
向量函数r(t)具有固定方向,则r与r’共线,r×r'=0;反之r对应的曲线的曲率为k=|r×r'|/|r'*r'*r'|=0,所以曲率半径为零,r有固定方向.当然可想象空间中质点运动的位移与速度共线是不会改变方向的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点