(高一数学)为什么两半径相同的圆相离时,其方程相减可得到两圆的对称轴?

(高一数学)为什么两半径相同的圆相离时,其方程相减可得到两圆的对称轴?

题目
(高一数学)为什么两半径相同的圆相离时,其方程相减可得到两圆的对称轴?
答案
已知:圆R:x^2+y^2+dx+ey+f=0和圆S:x^2+y^2+mx+ny+p=0相交于A、B两点
求证:圆R与圆S的公共弦AB的直线方程为(d-m)x+(e-n)y+(f-p)=0
同一法:
证明:设A(x1,y1),B(x2,y2)是圆R与圆S的两个交点,
所以,
x1^2+y1^2+dx1+ey1+f=0 ①
x1^2+y1^2+mx1+ny1+p=0 ②
x2^2+y2^2+dx2+ey2+f=0 ③
x2^2+y2^2+mx2+ny2+p=0 ④
所以,
①-②,得
(d-m)x1+(e-n)y1+(f-p)=0 ⑤
③-④,得
(d-m)x2+(e-n)y2+(f-p)=0 ⑥
由⑤、⑥,得A(x1,y1)、B(x2,y2)两点同时适合直线方程(d-m)x+(e-n)y+(f-p)=0
因为过A(x1,y1)、B(x2,y2)两点的直线有且只有一条
所以,直线方程(d-m)x+(e-n)y+(f-p)=0过A(x1,y1)、B(x2,y2)两点.
因为AB是圆R与圆S的公共弦
所以,圆R与圆S的公共弦AB的直线方程为(d-m)x+(e-n)y+(f-p)=0
即有
圆R:x^2+y^2+dx+ey+f=0 ⑦
圆S:x^2+y^2+mx+ny+p=0 ⑧
⑦-⑧,得
(d-m)x+(e-n)y+(f-p)=0
所以,圆R与圆S的公共弦AB的直线方程为(d-m)x+(e-n)y+(f-p)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.