如图,BD是△ABC的中线,CE⊥BD于E,AF⊥BD交BD的延长线于F. (1)探索BE,BF和BD三者之间的数量关系,并证明; (2)连接AE、CF,求证:AE∥CF.
题目
如图,BD是△ABC的中线,CE⊥BD于E,AF⊥BD交BD的延长线于F.
(1)探索BE,BF和BD三者之间的数量关系,并证明;
(2)连接AE、CF,求证:AE∥CF.
答案
(1)BE+BF=2BD,证明:∵BD是△ABC的中线,∴AD=CD.∵CE⊥BD于E,AF⊥BD交BD的延长线于F,∴∠CED=∠AFD=90°.在△AFD与△CED中∠AFD=∠CED∠ADF=∠CDEAD=CD,∴△AFD≌△CED(AAS),∴DF=DE.∵BE+BF=BE+ED+...
(1)根据AAS,可得△AFD与△CED的关系,根据全等三角形的性质,可得ED与DF的关系,根据线段的和差,可得答案;
(2)根据SAS,可得△AED与△CFD的关系,根据全等三角形的性质,可得∠AED与∠CFD的关系,根据平行线的判定,可得答案.
全等三角形的判定与性质.
本题考查了全等三角形,利用了全等三角形的判定与证明,平行线的判定.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点