已知f(1)=1,f(x+y)=f(x)+2(x-y)y,求函数解析式

已知f(1)=1,f(x+y)=f(x)+2(x-y)y,求函数解析式

题目
已知f(1)=1,f(x+y)=f(x)+2(x-y)y,求函数解析式
为什么不同的赋值所得解析式不一样?为什么另x=0 y=1解得f(0)=-1 再另x=0 y=x 解得f(X)=2x^2-1
与令x=1,则
f(1+y)=f(1)+2(1-y)y
=1+2y-2y^2
=1+2(y+1)-2-2(1+y)^2+4(y+1)-2 的解析式不一样 是那个错了吗?
所以
f(y)=-2y^2+6y-3
即解析式为
f(x)=-2x^2+6x-3
答案
令x=1,则
f(1+y)=f(1)+2(1-y)y
=1+2y-2y^2
=1+2(y+1)-2-2(1+y)^2+4(y+1)-2
所以
f(y)=-2y^2+6y-3
即解析式为
f(x)=-2x^2+6x-3
令x=0,y=1时,f(1)=f(0)-2(0-1),
得f(0)=3,不满足前面的解;
令x=0,y=t(不令y=x,避免出现y=x=0的不必要麻烦)时,
f(t)=f(0)+2(-t)t=-2t^2+f(0)=-2t^2+3,也不符合前面的解.
如此看来原题有错误.
假设,令x=m+n,y=-n,代入题目条件中,得
f(m)=f(m+n)+2(m+2n)(-n),
此时,用x、y代换上式得m、n,则
f(x)=f(x+y)-2y(x+2y),即
f(x+y)=f(x)+2y(x+2y)
将此式与题目条件
f(x+y)=f(x)+2y(x-y)
对比,可知应当有2y(x+2y)=2y(x-y)
由此得y=0,x∈R.
可见,要使题目条件成立的前提下有解,
应当说明此式的y=0,
否则就出现了阁下的疑问,
得到多种不同的解,
包括在下之前的错解了.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.