球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等于球半径的1/2,那么这个球的表面积是_.
题目
球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等于球半径的
,那么这个球的表面积是______.
答案
球面上三点A、B、C,平面ABC与球面交于一个圆,三点A、B、C在这个圆上
∵AB=18,BC=24,AC=30,
AC
2=AB
2+BC
2,∴AC为这个圆的直径,AC中点M圆心
球心O到平面ABC的距离即OM=球半径的一半=
R
△OMA中,∠OMA=90°,OM=
R,AM=
AC=30×
=15,OA=R
由勾股定理(
R)
2+15
2=R
2,
R
2=225
解得R=10
球的表面积S=4πR
2=1200π
故答案为:1200π.
由已知,易得三角形ABC是直角三角形,AC是斜边,设中点为M,则过A,B,C的截面圆心为M,OA=OB=OC是半径,求出OM,利用球半径是球心O到平面ABC的距离的2倍,求出半径,即可求出球O的表面积.
球的体积和表面积.
本题考查空间想象能力,计算能力,根据球的截面圆的性质,确定三角形ABC的形状以及利用球半径是球心O到平面ABC的距离的2倍,是解好本题是前提.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点