设x、y、z为正实数,求函数f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz的最小值.
题目
设x、y、z为正实数,求函数f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz的最小值.
答案
f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz≥2(2x)*2(12xy)*2(12yz)*2(2z)/xyz=16*2*12xyz/xyz=384 2x,12xy,12yz,2z分别开根号
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点