若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=_.
题目
若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=______.
答案
因为f(1005)=2,所以f(1005)+f(1005)=4又因为f(m)+f(n)=f(m+n)所以f(1005)+f(1005)=f(2010)=4又有f(1)+f(2009)=f(2010)f(3)+f(2007)=f(2010)…f(1003)+f(1007)=f(2010)f(1005...
因为f(1005)=2,所以f(1005)+f(1005)=4.因为f(m)+f(n)=f(m+n),所以f(1005)+f(1005)=f(2010)=4.f(1)+f(2009)=f(2010),f(3)+f(2007)=f(2010),…,f(1003)+f(1007)=f(2010),f(1005)=2,由此能求出f(1)+f(3)+f(5)+…+f(2009)的值.
函数的值.
本题考查函数值的求法,解题时要认真审题,仔细解答,注意f(m)+f(n)=f(m+n)的灵活运用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点