把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?
题目
把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?
答案
设所围长方形的长所用的火柴根数为x,则宽为(8-x),
则:x>8-x,得x>4,
由题意可知x<8,
∴4<x<8,
又x为整数,
∴长边所用的火柴数可为5,6,7.
即最多能围出不同形状的长方形的个数为3个.
求最多能围出不同形状的长方形的个数,由长方形的几何形状知:长大于宽,由此列出不等式求解分析后可得.
一元一次不等式的应用.
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点