已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O. 求证:∠BOC=90°+1/2∠A.

已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O. 求证:∠BOC=90°+1/2∠A.

题目
已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.
求证:∠BOC=90°+
1
2
∠A.
答案
证明:∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A...
根据角平分线的定义可得∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得证.

三角形内角和定理.

本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.