SOS

SOS

题目
SOS
△ADE中,∠DAE=Rt,AC是高,B在DE延长线上,∠BAE=∠D,求证:BE^2/EC^2=BD/DC
答案
三角形ADE中,∠D=∠CAE;又由于∠BAE=∠D
所以AE平分∠BAC
由内角角分线定理,有BE/CE=AB/AC
于是BE2/EC2=AB2/AC2
三角形BAE相似于三角形BDA,从而BE/BA=BA/BD,即AB2=BE*BD
RT三角形ADE中,sin∠BAE=sin∠D,得出AC2=CD*CE
代入得BE2/EC2=AB2/AC2=(BE*BD)/(CD*CE)=(BE/CE)*(BD/CD)
故BE/CE=BD/CD
原来的题目的结论错了,不应该取平方.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.