如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为( ) A.22 B.2 C.1 D.2
题目
如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为( )
A.
2B.
C. 1
D. 2
答案
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴
=
,
∵∠AMN=30°,
∴∠A′ON=60°,∠BON=30°,
∴∠A′OB=90°,
在Rt△A′OB中,OB=OA′=1,
∴A′B=
=
=
,即PA+PB的最小值
.
故选B.
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知
=
,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.
圆周角定理;垂径定理;轴对称-最短路线问题.
本题考查的是圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点