设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab等于_.

设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab等于_.

题目
设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab等于______.
答案
验证发现,
当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,
当x=0时,可得0≤b≤1,结合a+b=0可得-1≤a≤0
令f(x)=x4-x3+ax+b,即f(1)=a+b=0
又f′(x)=4x3-3x2+a,f′′(x)=12x2-6x,
令f′′(x)>0,可得x>
1
2
,则f′(x)=4x3-3x2+a在[0,
1
2
]上减,在[
1
2
,+∞)上增
又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0
又x≥0时恒有0≤x4-x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点
故有f′(1)=1+a=0,由此得a=-1,b=1
故ab=-1
故答案为-1
由题意,x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,考察(x2-1)2,发现当x=1时,其值为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,再令f(x)=x4-x3+ax+b,即f(x)≥0在x≥0恒成立,利用导数研究函数在x≥0的极值,即可得出参数所满足的另一个方程,由此解出参数a,b的值,问题即可得解

导数在最大值、最小值问题中的应用;函数恒成立问题.

本题考查函数恒成立的最值问题及导数综合运用题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,及极值的确定,将问题灵活转化是解题的关键

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.