证明不等式三角形问题

证明不等式三角形问题

题目
证明不等式三角形问题
在三角形中S为面积
求证c^2-a^2-b^2+1/4ab>4√3S
题记不大清楚了大概就是这个
是这个c^2-a^2-b^2+4ab>4√3S
答案
余弦定理c^2=a^2+b^2-2abcosc,变形得c^2-a^2-b^2+4ab=4ab-2abcosc
三角形面积S=1/2absinc
代入不等式得4ab-2abcosc≥4√3×1/2absinc
等价于2-cosc≥√3sinc
即1≥√3/2sinc+1/2cosc
即1≥sin(c+30)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.