已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程.
题目
已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程.
答案
∵直线l垂直于直线3x-4y-7=0,∴设直线l方程为4x+3y+b=0,
则l与x轴、y轴的交点分别为A(
−,0),B(0,
−).
∴|AB|=
b.
由|OA|+|OB|+|AB|=10,得
++=10.
∴b=±10.
∴l方程为4x+3y+10=0,或4x+3y-10=0.
因为直线l垂直于直线3x-4y-7=0,所以设直线l方程为4x+3y+b=0,再分别求出A,B点的坐标,利用两点间距离公式求出三角形ABO的三边长,根据三角形ABO的周长为10,就可得到参数B的值,求得直线l的方程.
直线的一般式方程.
本题主要考查互相垂直的两直线方程之间的关系,以及待定系数法求直线方程.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点