已知:如图,∠B=∠C. (1)若AD∥BC,求证:AD平分∠EAC; (2)若∠B+∠C+∠BAC=180°,AD平分∠EAC,求证:AD∥BC.
题目
已知:如图,∠B=∠C.
(1)若AD∥BC,求证:AD平分∠EAC;
(2)若∠B+∠C+∠BAC=180°,AD平分∠EAC,求证:AD∥BC.
答案
证明:(1)∵AD∥BC,
∴∠1=∠B,∠2=∠C,
又∵∠B=∠C,
∴∠1=∠2,
即AD平分∠EAC;
(2)∵∠B+∠C+∠BAC=180°,且∠1+∠2+∠BAC=180°,
∴∠1+∠2=∠B+∠C,
又∵AD平分∠EAC,
∴∠1=∠2,
∵∠B=∠C,
∴∠1=∠B(或∠2=∠C),
∴AD∥BC.
(1)根据平行线得出∠1=∠B,∠2=∠C,推出∠1=∠2即可;
(2)求出∠1+∠2=∠B+∠C,推出∠B=∠C,推出∠1=∠B,根据平行线的判定推出即可.
平行线的判定与性质.
本题考查了平行线的性质和判定,三角形的内角和定理的应用,主要考查学生的推理能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点