计算不定积分∫x√x2+1dx

计算不定积分∫x√x2+1dx

题目
计算不定积分∫x√x2+1dx
答案
∫x√(x^2+1)dx
=(1/2)∫√(x^2+1)dx^2
=(1/2)∫(x^2+1)^(1/2)d(x^2+1)
=(1/2)*[(x^2+1)^(1/2+1)/(1/2+1)]+C
=(1/3)(x^2+1)^(3/2)+C
=(1/3)*(x^2+1)/√(x^2+1)+C
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.