一次函数性质

一次函数性质

性质概述

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k≠0) (k不等于0,且k,b为常数)

  2.当x=0时,b为函数在y轴上的,坐标为(0,b).

  当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)

  3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

  形、取、象、交、减。

  4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.

  5.函数图像性质:当k相同,且b不相等,图像平行;

  当k不同,且b相等,图像相交于Y轴;

  当k互为负倒数时,两直线垂直;

  6.平移时:上加下减在末尾,左加右减在中间

  图像性质

  1.作法与图形:通过如下3个步骤:

  (1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,

  (2)描点:一般取两个点,根据“两点确定一条直线”的道理;

  (3)连线:可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-与(-b/k,0),0与b)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3.函数不是数,它是指某一变化过程中两个变量之间的关系。

  4.k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比,此时的图像是是一条经过原点的直线)

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  y=kx+b(k,b为常数,k≠0)时:

  当 k>0,b>0, 这时此函数的图象经过一,二,三象限;

  当 k>0,b<0, 这时此函数的图象经过一,三,四象限;

  当 k<0,b>0, 这时此函数的图象经过一,二,四象限;

  当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

  当b>0时,直线必通过一、二象限;

  当b<0时,直线必通过三、四象限。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

  4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等.

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1.

相关试题
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.