合金

合金

合金的制作合成

  常将两种或两种以上的金属元素或以金属为基添加其他非金属元素通过合金化工艺(熔炼、机械合金化、烧结、气相沉积等等)而形成的具有金属特性的金属材料叫做合金。但合金可能只含有一种金属元素,如钢。(钢,是对含碳量质量百分比介于0.02%至2.00%之间的铁合金的统称)

  这里我们需要注意,合金不是一般概念上的混合物,甚至可以是纯净物,如单一相的金属互化物合金,所添加合金元素可以形成固溶体、化合物,并产生吸热或放热反应,从而改变金属基体的性质。

  合金的生成常会改善元素单质的性质,例如,钢的强度大于其主要组成元素铁。合金的物理性质,例如密度、反应性、杨氏模量、导电性和导热性可能与合金的组成元素尚有类似之处,但是合金的抗拉强度和抗剪强度却通常与组成元素的性质有很大不同。这是由于合金与单质中的原子排列有很大差异。

  少量的某种元素可能会对合金的性质造成很大的影响。例如,铁磁性合金中的杂质会使合金的性质发生变化。

  不同于纯净金属的是,多数合金没有固定的熔点,温度处在熔化温度范围间时,混合物为固液并存状态。因此可以说,合金的熔点比组分金属低。参见低共熔混合物。

  常见的合金中,黄铜是由铜和锌的合金;青铜是锡和铜的合金,用于雕象、装饰品和教堂钟。一些国家的货币都会使用合金(如镍合金)

合金的物理分类

  根据合金中含量较大的主要金属的名称而分类称作某某合金,如铜含量高的为铜合金,其性能主要保持铜的性能。

  合金类型

  (1)混合物合金(共熔混合物),当液态合金凝固时,构成合金的各组分分别结晶而成的合金,如焊锡、铋镉合金等;

  (2)固熔体合金,当液态合金凝固时形成固溶体的合金,如金银合金等;

  (3)金属互化物合金,各组分相互形成化合物的合金,如铜、锌组成的黄铜(β-黄铜、γ-黄铜和ε-黄铜)等。

  合金的许多性能优于纯金属,故在应用材料中大多使用合金(参看铁合金、不锈钢)。

  合金的通性

  各类型合金都有以下通性:

  (1)多数合金熔点低于其组分中任一种组成金属的熔点;

  (2)硬度一般比其组分中任一金属的硬度大;(特例:钠钾合金是液态的,用于原子反应堆里的导热剂)

  (3)合金的导电性和导热性低于任一组分金属。利用合金的这一特性,可以制造高电阻和高热阻材料。还可制造有特殊性能的材料。

  (4)有的抗腐蚀能力强(如不锈钢)如在铁中掺入15%铬和9%镍得到一种耐腐蚀的不锈钢,适用于化学工业

常见的合金

  球墨铸铁、锰钢、不锈钢、黄铜、青铜、白铜、焊锡、硬铝、18K黄金、18K白金等等。

  钢铁

  简介

  钢铁是铁与C、Si、Mn、P、S以及少量的其他元素所组成的合金。其中除Fe外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。

  分类及性质

  按含碳量不同,铁碳合金分为钢与生铁两大类,钢是含碳量为0.03%~2%的铁碳合金。碳钢是最常用的普通钢,冶炼方便、加工容易、价格低廉,而且在多数情况下能满足使用要求,所以应用十分普遍。按含碳量不同,碳钢又分为低碳钢、中碳钢和高碳钢。随含碳量升高,碳钢的硬度增加、韧性下降。合金钢又叫特种钢,在碳钢的基础上加入一种或多种合金元素,从而具有一些特殊性能,如高硬度、高耐磨性、高韧性、耐腐蚀性,等等。经常加入钢中的合金元素有Si、W、Mn、Cr、Ni、Mo、V、Ti等。我国合金钢的资源相当丰富,除Cr、Co不足,Mn品位较低外,W、Mo、V、Ti和稀土金属储量都很高。

  关于生铁

  生铁硬而脆,但耐压耐磨。灰口铁和球墨铸铁。白口铁中碳以Fe3C断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。碳以片状石墨形态分布的称灰口铁,断口呈银灰色,易切削,易铸,耐磨。若碳以球状石墨分布则称球墨铸铁,其性能、加工性能接近于钢。在铸铁中加入特种合金元素可得特种铸铁,如加入Cr,耐磨性可大幅度提高,在特种条件下有十分重要的应用。

  硅铁

  硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的。硅和氧很容易化合成二氧化硅。所以硅铁常用于炼钢作脱氧剂,同时由于SIO2生成时放出大量的热,在脱氧同时,对提高钢水温度也是有利的。硅铁作为合金元素加入剂。广泛用于低合金结构钢、合结钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,以外硅铁在铁合金生产及化学工业中,常用作还原剂。含硅量达95%--99%。纯硅常用制造单晶硅或配制有色金属合金。

  锰铁

  锰铁是以锰矿石为原料。在高炉或电炉中熔炼而成的。锰铁也是钢中常用的脱氧剂,锰还有脱硫和减少硫的有害影响的作用。因而在各种钢和铸铁中,几乎都含有一定数量的锰。锰铁还作为重要的合金剂。广泛地用于结构钢。工具钢、不锈耐热钢。耐磨钢等合金钢中。

特种合金

  工业上应用的合金种类数以千计,现只简要地介绍其中几大类。

  耐蚀合金

  耐蚀合金

  耐蚀合金

  金属材料在腐蚀性介质中所具有的抵抗介质侵蚀的能力,称金属的耐蚀性。纯金属中耐蚀性高的通常具备下述三个条件之一:

  ①热力学稳定性高的金属。通常可用其标准电极电势来判断,其数值较正者稳定性较高;较负者则稳定性较低。耐蚀性好的贵金属,如Pt、Au、Ag、Cu等就属于这一类。

  ②易于钝化的金属。不少金属可在氧化性介质中形成具有保护作用的致密氧化膜,这种现象称为钝化。金属中最容易钝化的是Ti、Zr、Ta、Nb、Cr和Al等。

  ③表面能生成难溶的和保护性能良好的腐蚀产物膜的金属。这种情况只有在金属处于特定的腐蚀介质中才出现,例如,Pb和Al在H2SO4溶液中,Fe在H3PO4溶液中,Mo在盐酸中以及Zn在大气中等。

  因此,工业上根据上述原理,采用合金化方法获得一系列耐蚀合金,一般有相应的三种方法:

  ①提高金属或合金的热力学稳定性,即向原不耐蚀的金属或合金中加入热力学稳定性高的合金元素,使形成固溶体以及提高合金的电极电势,增强其耐蚀性。例如在Cu中加Au,在Ni中加入Cu、Cr等,即属此类。不过这种大量加入贵金属的办法,在工业结构材料中的应用是有限的。

  ②加入易钝化合金元素,如Cr、Ni、Mo等,可提高基体金属的耐蚀性。在钢中加入适量的Cr,即可制得铬系不锈钢。实验证明,在不锈钢中,含Cr量一般应大于13%时才能起抗蚀作用,Cr含量越高,其耐蚀性越好。这类不锈钢在氧化介质中有很好的抗蚀性,但在非氧化性介质如稀硫酸和盐酸中,耐蚀性较差。这是因为非氧化性酸不易使合金生成氧化膜,同时对氧化膜还有溶解作用。

  ③加入能促使合金表面生成致密的腐蚀产物保护膜的合金元素,是制取耐蚀合金的又一途径。例如,钢能耐大气腐蚀是由于其表面形成结构致密的化合物羟基氧化铁[FeOx·(OH)23-2x],它能起保护作用。钢中加入Cu与P或P与Cr均可促进这种保护膜的生成,由此可用Cu、P或P、Cr制成耐大气腐蚀的低合金钢。

  金属腐蚀是工业上危害最大的自发过程,因此耐蚀合金的开发与应用,有重大的社会意义和经济价值。

  耐热合金

  耐热合金

  耐热合金

  耐热合金合金又称高温合金,它对于在高温条件下的工业部门和应用技术领域有着重大的意义。

  一般说,金属材料的熔点越高,其可使用的温度限度越高。这是因为随着温度的升高,金属材料的机械性能显著下降,氧化腐蚀的趋势相应增大,因此,一般的金属材料都只能在500 ℃~600 ℃下长期工作。能在高于700 ℃的高温下工作的金属通称耐热合金。“耐热”是指其在高温下能保持足够强度和良好的抗氧化性。

  提高钢铁抗氧化性的途径有两条:一是在钢中加入Cr、Si、Al等合金元素,或者在钢的表面进行Cr、Si、Al合金化处理。它们在氧化性气氛中可很快生成一层致密的氧化膜,并牢固地附在钢的表面,从而有效地阻止氧化的继续进行。二是用各种方法在钢铁表面形成高熔点的氧化物、碳化物、氮化物等耐高温涂层。

  提高钢铁高温强度的方法很多,从结构、性质的化学观点看,大致有两种主要方法:

  一是增加钢中原子间在高温下的结合力。研究指出,金属中结合力,即金属键强度大小,主要与原子中未成对的电子数有关。从周期表中看,ⅥB元素金属键在同一周期内最强。因此,在钢中加入Cr、Mo、W等原子的效果最佳。

  二是加入能形成各种碳化物或金属间化合物的元素,以使钢基体强化。由若干过渡金属与碳原子生成的碳化物属于间隙化合物,它们在金属键的基础上,又增加了共价键的成分,因此硬度极大,熔点很高。例如,加入W、Mo、V、Nb可生成WC、W2C、MoC、Mo2C、VC、NbC等碳化物,从而增加了钢铁的高温强度。

  利用合金方法,除铁基耐热合金外,还可制得镍基、钼基、铌基和钨基耐热合金,它们在高温下具有良好的机械性能和化学稳定性。其中镍基合金是最优的超耐热金属材料,组织中基体是Ni?Cr?Co的固溶体和Ni3Al金属化合物,经处理后,其使用温度可达1 000 ℃~1 100 ℃。

  钛合金

  钛合金

  钛合金

  钛是周期表中第IVB类元素,外观似钢,熔点达1 672 ℃,属难熔金属。钛在地壳中含量较丰富,远高于Cu、Zn、Sn、Pb等常见金属。我国钛的资源极为丰富,仅四川攀枝花地区发现的特大型钒钛磁铁矿中,伴生钛金属储量约达4.2亿吨,接近国外探明钛储量的总和。

  纯钛机械性能强,可塑性好,易于加工,如有杂质,特别是O、N、C 提高钛的强度和硬度,但会降低其塑性,增加脆性。

  钛是容易钝化的金属,且在含氧环境中,其钝化膜在受到破坏后还能自行愈合。因此 干腐蚀介质都是稳定的。钛和钛合金有优异的耐蚀性,只能被氢氟酸浓度的 侵蚀。特别是 稳定,将钛或钛合金放 取出后,仍光亮如初,远优于不锈钢。

  钛的另一重要特性是密度小。其强度是不锈钢的3.5倍,铝合金的1.3倍,是目前所有工业金属材料中最高的。

  液态的钛几乎能溶解所有的金属,形成固溶体或金属化合物等各种合金。合金元素如Al、V、Zr、Sn、Si、Mo和Mn等的加入,可改善钛的性能,以适应不同部门的需要。例如,Ti-Al-Sn合金有很高的热稳定性,可在相当高的温度下长时间工作;以Ti-Al-V合金为代表的超塑性合金,可以50%~150%地伸长加工成型,其最大伸长可达到2 000%。而一般合金的塑性加工的伸长率最大不超过30%。

  由于上述优异性能,钛享有“未来的金属”的美称。钛合金已广泛用于国民经济各部门,它是火箭、导弹和航天飞机不可缺少的材料。船舶、化工、电子器件和通讯设备以及若干轻工业部门中要大量应用钛合金,只是钛的价格较昂贵,限制了它的广泛使用。

  磁性合金

  磁性合金

  磁性合金

  材料在外加磁场中,可表现出三种情况:①不被磁场所吸引的,叫反磁性材料;②微弱地被磁场所吸引的,叫顺磁性材料;③强烈地被磁场吸引的,称铁磁性材料,其磁性随外磁场的加强而急剧增高,并在外磁场移走后,仍能保留磁性。金属材料中,大多数过渡金属具有顺磁性;只有Fe、Co、Ni等少数金属是铁磁性的。

  金属中组成永磁材料的主要元素是Fe、Co、Ni和某些稀土元素。使用的永磁合金有稀土?钴系、铁?铬?钴系和锰?铝?碳系合金。

  磁性合金在电力、电子、计算机、自动控制和电光学等新兴技术领域中,有着日益广泛的应用。

  钾钠合金

  钾钠合金

  钾钠合金

  [英] Sodium Potaddium Al

  [别]钠钾合金

  [缩]JNHJ

  【化学结构】

  4K-Na

  【化学特性】

  银色的软质固体或液体. 遇酸、二氧化碳、潮气及水发生剧烈反应, 放出氢气, 立即自燃, 有时甚至会爆炸. 密度: 0.847克/毫升(100℃) (K78%,Na22%); 0.886克/毫升(100℃)(K56%,Na44%) 熔点: -11℃(K78%,Na22%); 19℃(K56%, Na44%);

  【极限参数】

  沸点: 784℃(K78%,Na22%); 825℃(K56%, Na44%);

  【应用】液态金属核反应堆用的冷却剂是钠钾合金,常温下液态。

  钠钾合金的熔点

  钠 钾 熔点

  20% 80% -10 ℃

  22% 78% -11 ℃

  24% 76% -3.5 ℃

  40% 60% 5 ℃

相关试题
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.