小明在路灯AB下玩耍时发现自己的影长DF的长是3米,沿着BD方向来到点F处再测得自己的影长FG是4米.如果小明的身高是1.8米,求路灯AB的高度. 

小明在路灯AB下玩耍时发现自己的影长DF的长是3米,沿着BD方向来到点F处再测得自己的影长FG是4米.如果小明的身高是1.8米,求路灯AB的高度. 

题型:解答题难度:一般来源:不详
小明在路灯AB下玩耍时发现自己的影长DF的长是3米,沿着BD方向来到点F处再测得自己的影长FG是4米.如果小明的身高是1.8米,求路灯AB的高度.
 
答案
小明的身高中1.6米,他原来与路灯的距离是9m。
解析

试题分析:22.(本题15分)
解:因为ABCD,所以△ABF∽△CDF,       
所以,即     ;
因为ABEF,所以△ABG∽△EFG
,即    
因为CD=EF,所以解得BD=9m,     
BD=9代入,得CD=1.6m。     
答:小明的身高中1.6米,他原来与路灯的距离是9m。
点评:本题难度中等,主要考查学生对相似三角形性质及比例关系知识点的掌握。要求学生牢固掌握解题技巧。为中考场考题型,要求学生牢固掌握解题技巧。
举一反三
某蔬菜店第一次用800元购进某种蔬菜,由于销售状况良好,该店又用1400元第二次购进该品种蔬
菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.
(1)第一次所购该蔬菜的进货价是每千克多少元?
(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有3% 的损耗,第二次购进的蔬菜有5% 的损耗,若该蔬菜店售完这些蔬菜获利不低于1244元,则该蔬菜每千克售价至少为多少元?
题型:解答题难度:一般| 查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分别为边AB、AC的中点,连结DE,点P从点A出发,沿折线AE-ED-DB运动,到点B停止.点P在折线AE-ED上以每秒1个单位的速度运动,在DB上以每秒个单位的速度运动. 过点P作PQ⊥BC于点Q,以PQ为边在PQ右侧作正方形PQMN,使点M落在线段BC上.设点P的运动时间为秒().

(1)在整个运动过程中,求正方形PQMN的顶点N落在AB边上时对应的的值;
(2)连结BE,设正方形PQMN与△BED重叠部分图形的面积为S,请直接写出S与之间的函数关系式和相应的自变量的取值范围;
(3)当正方形PQMN顶点P运动到与点E重合时,将正方形PQMN绕点Q逆时针旋转60°得正方形
P1 Q M1 N1,问在直线DE与直线AC上是否存在点G和点H,使△GHP1是等腰直角三角形? 若
存在,请求出EG的值;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
如图,将边长为1的等边△PQR沿着边长为1的正五边形ABCDE外部的边连续滚动(点Q、点R分别与点A、点B重合),当△PQR第一次回到原来的起始位置时(顶点位置与原来相同),点P所经过的路线长为                          ( )

A.            B.           C.            D.
题型:单选题难度:一般| 查看答案
如图,大楼AB、CD和大树EF的底端B、D、F在同一直线上,BF=FD=10米,AB=16米,某人在楼顶A处测得点C的仰角为22°,测得点E的俯角为45°.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)

(1)求大树EF的高度;
(2)求大楼CD的高度.
题型:解答题难度:一般| 查看答案
甲、乙两地相距20千米.小明上午8:30骑自行车由甲地去乙地,平均车速8千米/小时;小丽上午10:00坐公共汽车沿相同的路线也由甲地去乙地,平均车速为40千米/小时.

(1)分别写出两人离甲地的距离与时间的函数关系式,并在同一平面直角坐标系中画出两个函数的图象;
(2)判断谁先到达乙地,并说明理由.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.