因式分解:x2y2﹣x2(y﹣1)2.
题型:解答题难度:简单来源:不详
因式分解:x2y2﹣x2(y﹣1)2. |
答案
x2(2y﹣1) |
解析
试题分析:先提公因式x2,再利用平方差公式进行二次分解即可. 解:原式=x2[y2﹣(y﹣1)2] =x2[y+(y﹣1)][y﹣(y﹣1)] =x2(y+y﹣1)(y﹣y+1) =x2(2y﹣1). 点评:此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止 |
举一反三
把下列各式分解因式: (1)a2﹣14ab+49b2 (2)a(x+y)﹣(a﹣b)(x+y); (3)121x2﹣144y2; (4)3x4﹣12x2. |
请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. |
把下列各式分解因式 (1)(x2+y2)2﹣4x2y2;(2)3x3﹣12x2y+12xy2 |
阅读下列材料,并解答相应问题: 对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有: x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2 =(x+a)2﹣(2a)2 =(x+2a+a)(x+a﹣2a) =(x+3a)(x﹣a). (1)像上面这样把二次三项式分解因式的数学方法是. (2)这种方法的关键是. (3)用上述方法把m2﹣6m+8分解因式. |
最新试题
热门考点