某中学为了落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图
题型:不详难度:来源:
某中学为了落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本. (1)符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元? |
答案
(1)有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个.(2)方案一费用最低,最低费用是22320元. |
解析
试题分析:(1)设组建中型两类图书角x个、小型两类图书角(30-x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组 ,解不等式组然后去整数即可求解. (2)根据(1)求出的数,分别计算出每种方案的费用即可. 试题解析:(1)设组建中型图书角x个,则组建小型图书角为(30-x)个. 由题意,得 , 化简得, 解这个不等式组,得18≤x≤20. 由于x只能取整数,∴x的取值是18,19,20. 当x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10. 故有三种组建方案: 方案一,中型图书角18个,小型图书角12个; 方案二,中型图书角19个,小型图书角11个; 方案三,中型图书角20个,小型图书角10个. (2)方案一的费用是:860×18+570×12=22320(元); 方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元). 故方案一费用最低,最低费用是22320元. |
举一反三
已知关于x的不等式(3﹣a)x>a-3的解集为x<-1,则a的取值范围是 . |
关于x的不等式组的解集在数轴上表示为 ( )
|
小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足( )A.x=3 | B.x="7" | C.x=3或x="7" | D. |
|
解不等式组: |
某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
| A型
| B型
| 价格(万元/台)
| 12
| 10
| 月污水处理能力(吨/月)
| 200
| 160
| 经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨. (1)该企业有几种购买方案? (2)哪种方案更省钱,说明理由. |
最新试题
热门考点