如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,33).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,O

如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,33).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,O

题型:不详难度:来源:
如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3


3
).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动,速度分别为1,


3
,2(长度单位/秒).一直尺的上边缘l从x轴的位置开始以


3
3
(长度单位/秒)的速度向上平行移动(即移动过程中保持lx轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是______;
(2)当t﹦4时,点P的坐标为______;当t﹦______,点P与点E重合;
(3)①作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?
②当t﹦2时,是否存在着点Q,使得△FEQ△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.
答案
(1)y=-


3
x+3


3
;(4分)

(2)(0,


3
),t=
9
2
;(4分)(各2分)

(3)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°
∴△EOP≌△FGP,∴OP=PG﹒
又∵OE=FG=


3
3
t,∠A=60°,∴AG=
FG
tan60°
=
1
3
t
而AP=t,
∴OP=3-t,PG=AP-AG=
2
3
t
由3-t=
2
3
t得t=
9
5
;(1分)
当点P在线段OB上时,形成的是三角形,不存在菱形;
当点P在线段BA上时,
过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2)
∵OE=


3
3
t,∴BE=3


3
-


3
3
t,∴EF=
BE
tan60°
=3-
t
3

∴MP=EH=
1
2
EF=
9-t
6
,又∵BP=2(t-6)
在Rt△BMP中,BP•cos60°=MP
即2(t-6)•
1
2
=
9-t
6
,解得t=
45
7
.(1分)
综上所述,t为
9
5
45
7
时,四边形PEP"F为菱形.

②存在﹒理由如下:
∵t=2,∴OE=
2
3


3
,AP=2,OP=1
将△BEP绕点E顺时针方向旋转90°,得到△B"EC(如图3)
∵OB⊥EF,
∴点B"在直线EF上,
∵C点横坐标绝对值等于EO长度,C点纵坐标绝对值等于EO-PO长度
∴C点坐标为(-
2
3


3
2
3


3
-1)
过F作FQB"C,交EC于点Q,
则△FEQ△B"EC
BE
FE
=
B′E
FE
=
CE
QE
=


3
,可得Q的坐标为(-
2
3


3
3
)(1分)
根据对称性可得,Q关于直线EF的对称点Q"(-
2
3


3
)也符合条件.(1分)
举一反三
声音在空气中传播的速度y(米/秒)(简称音速)是气温x(℃)(0≤x≤30)的一次函数.下表列出了一组不同气温时的音速:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

气温x(℃)5101520
音速y(米/秒)334337340343
若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是(  )
A.B.C.D.
如图,四边形A1B1C1O,A2B2C2C1,A3B3C3C2均为正方形.点A1,A2,A3和点C1,C2,C3分别在直线y=kx+b(k>0)和x轴上,点B3的坐标是(
19
4
9
4
),则k+b=______.
课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来又打开了第二个饮水管.假设接水的过程中每根饮水管出水的速度是匀速的,在不关闭饮水管的情况下,饮水机水桶内的存水量y(升)与接水时间x(分)的函数关系图象如图所示.请结合图象回答下列问题:
(1)存水量y(升)与接水时间x(分)的函数关系式;
(2)如果接水的同学有28名,那么他们都接完水需要几分钟?
(3)如果有若干名同学按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,那么有多少名学生接完水?
已知直线y=kx+b经过点(0,-2)和点(-2,0).
(1)求直线的解析式;
(2)在图中画出直线,并观察y>1时,x的取值范围(直接写答案);
(3)求此直线与两坐标轴围成三角形的面积.