如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐标为2,(1)求一

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐标为2,(1)求一

题型:不详难度:来源:
如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,
与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐
标为2,
(1)求一次函数和反比例函数的解析式;
(2)直接写出时x的取值范围。
答案
(1)y1= x+1,(2)x<-2或0<x<4
解析
解:(1)∵一次函数的图象与y轴交于点A,与x轴交于点B,
∴A(0,1),B( ,0)。
∵△AOB的面积为1,∴×OB×OA=1,即。∴
∴一次函数的解析式为y1= x+1。
∵点M在直线y1上,∴当y=2时,x+1=2,解得x=-2。∴M的坐标为(-2,2)
又∵点M在反比例函数的图象上,∴k2=-2×2=-4,
∴反比例函数的解析式为
(2)当y1>y2时,x<-2或0<x<4。
(1)先由一次函数的解析式求出点A与点B的坐标,再根据△AOB的面积为1,可得到k1的值,
从而求出一次函数的解析式;得到点M的坐标,然后运用待定系数法即可求出反比例函数的解析式。
(2)y1>y2即一次函数值大于反比例函数值,只需观察一次函数的图象落在反比例函数的图象的
上方时自变量的取值范围即可,为此,先求出它们的交点坐标,再根据函数图象,可知在在点M的左边以及原点和点N之间的区间,y1>y2
解方程组 ,
∴当y1>y2时,x<-2或0<x<4。
举一反三
如图,在平面直角坐标xOy中,一次函数的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,).线段OA=5,E为x轴上一点,且sin∠AOE=
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.
题型:不详难度:| 查看答案
如图,A(-1,m)与B(2,m+)是反比例函数y=图像上的两个点,点C(-1,0),在此函数图像上找一点D,使得以A,B,C,D为顶点的四边形为梯形。满足条件的点D共有(   )
A.4个B.5个C.3个D.6个

题型:不详难度:| 查看答案
如果反比例函数的图像在的范围内,的增大而减小,那么取值范是      
题型:不详难度:| 查看答案
如图,已知直线l经过点A(1,0),与双曲线y=(x>0)交于点B(2,1).过点P(a,a-1)
(a>1)作x轴的平行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N.
(1)求m的值和直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA.
题型:不详难度:| 查看答案
点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且
x1<x2<0<x3,则y1、y2、y3的大小关系是【   】
A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.