如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=

如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=

题型:不详难度:来源:
如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=
(1)求抛物线的解析式;
(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;
(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.

答案
(1);(2)(m<3);(3)
解析

试题分析:(1)由抛物线过点,根据点在曲线上点的坐标满足方程的关系,应用待定系数法求解即可.
(2)证明△PCD是等边三角形,用m表示CP和PG,由即可求得S与m之间的函数关系式.
(3)通过证明△CPF≌△CDF得∠PCF=∠DCF,根据垂直线段最短的性质知线段BF 的最小值为点B到直线CF的距离.
(1)依题意,得 ,解得 .
∴抛物线的解析式为,即
(2)∵,∴抛物线的对称轴为.∴C(3,0).
,∴.∴
∴∠OCB=.∴∠PCD=
∵∠CPD=,∴∠CDP=.∴△PCD是等边三角形.
如图,过点P作PQ⊥x轴于点Q,PG∥x轴,交CD于点G,
∵点P的横坐标为m,∴OQ=m,CQ=3-m.
,PG=CQ=3-m.
,即(m<3).

(3)如图,连接PF、CF.
∵PE⊥DP,F为DE的中点,∴PF==DF.
∵CP=CD,CF=CF,∴△CPF≌△CDF.∴∠PCF=∠DCF.
∴点F在∠PCD的平分线所在的直线上.
∴BF的最小值为点B到直线CF的距离.
∵∠OCB=∠BCF=,∴点B到直线CF的距离等于OB.
∴BF的最小值为

举一反三
若二次函数配方后为,则       .
题型:不详难度:| 查看答案
如图,二次函数的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=       

题型:不详难度:| 查看答案
某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为
A.30万元B.40万元C.45万元D.46万元

题型:不详难度:| 查看答案
如图,抛物线经过A(,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式及顶点坐标;
(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;
(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.