如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是

如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是

题型:不详难度:来源:
如图,在平面直角坐标系中,点A的坐标为(1,,△AOB的面积是
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.
答案

        
解:(1)由题意得OB• =
∴B(-2,0).
(2)设抛物线的解析式为y=ax(x+2),代入点A(1,),得

(3)存在点C、过点A作AF垂直于x轴于点F,抛物线
的对称轴x=-1交x轴于点E、当点C位于对称轴
与线段AB的交点时,△AOC的周长最小,
∵△BCE∽△BAF,∴
∴CE= = ,∴C(-1,).
(4)存在、如图,设p(x,y),直线AB为y=kx+b,则解得
∴直线AB为,SBPOD=SBPO+SBOD= |OB||YP|+ |OB||YD|=|YP|+|YD|
=
∵SAOD=SAOB-SBOD= - ×2×| x+ |="-" x+
=" ="
∴x1="-" ,x2=1(舍去),
∴p(- ,- ),
又∵SBOD= x+
=" ="
∴x1="-" ,x2=-2.
P(-2,0),不符合题意.
∴存在,点P坐标是(- ,- ).
解析

举一反三
(2011•桂林)已知二次函数的图象如图.
(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
题型:不详难度:| 查看答案
已知抛物线y = x2-2x + m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.
题型:不详难度:| 查看答案
出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
题型:不详难度:| 查看答案
(2011贵州安顺,9,3分)正方形ABCD边长为1,EFGH分别为边ABBCCDDA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为yAE=x. 则y关于x的函数图象大致是(     )

A.               B.              C.              D.
题型:不详难度:| 查看答案
(2011贵州安顺,27,12分)如图,抛物线y=x2+bx-2与x轴交于AB两点,与y轴交于C点,且A(一1,0).
27
⑴求抛物线的解析式及顶点D的坐标;
⑵判断△ABC的形状,证明你的结论;
⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.