(1)∵抛物线y = x2-2x + m-1与x轴只有一个交点,∴△=(-2)2-4×1×(m-1)= 0,解得 m = 2. (2)由(1)知抛物线的解析式为 y = x2-2x + 1,易得顶点B(1,0),当 x = 0时,y = 1,得A(0,1). 由 1 = x2-2x + 1 解得 x = 0(舍),或 x = 2,所以C(2,1). 过C作x轴的垂线,垂足为D,则CD = 1,BD = xD-xB = 1. ∴在Rt△CDB中,∠CBD = 45°,BC =. 同理,在Rt△AOB中,AO =" OB" = 1,于是∠ABO = 45°,AB =. ∴∠ABC = 180°-∠CBD-∠ABO = 90°,AB = BC,因此△ABC是等腰直角三角形. (3)由题知,抛物线C′ 的解析式为y = x2-2x -3,当 x = 0时,y =-3;当y = 0时,x =-1,或x = 3, ∴ E(-1,0),F(0,-3),即 OE = 1,OF = 3. ①若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M. ∵∠P1EM +∠OEF =∠EFO +∠OEF = 90°, ∴∠P1EM =∠EFO,得Rt△EFO∽Rt△P1EM,于是,即EM =" 3" P1M. ∵ EM = x1 + 1,P1M = y1,∴ x1 + 1 =" 3" y1. (*) 由于P1(x1,y1)在抛物线C′ 上,有3(x12-2x1-3)= x1 + 1, 整理得 3x12-7x1-10 = 0,解得 x1 =-1(舍),或. 把代人(*)中可解得.∴P1(,). ②若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥与y轴于N. 同①,易知Rt△EFO∽Rt△FP2N,得,即P2N =" 3" FN. ∵ P2N = x2,FN =" 3" + y2,∴ x2 = 3(3 + y2). (**) 由于P2(x2,y2)在抛物线C′ 上,有 x2 = 3(3 + x22-2x2-3), 整理得 3x22-7x2 = 0,解得 x2 = 0(舍),或. 把代人(**)中可解得.∴P2(,). 综上所述,满足条件的P点的坐标为(,)或(,). |