(本题满分9分)如图,以为顶点的抛物线与轴交于点.已知、两点坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设是抛物线上的一点(、为正整数),且

(本题满分9分)如图,以为顶点的抛物线与轴交于点.已知、两点坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设是抛物线上的一点(、为正整数),且

题型:不详难度:来源:
(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.
答案

(1)
(2)(6,4)
(3)总是成立
解析
(1)设,把代入,得.
.
(2)∵为正整数,,
应该是9的倍数. 
是3 的倍数.
又∵,
…  
时,,此时,.
∴四边形的四边长为3,4,5,6.
时,,
∴四边形的四边长不能是四个连续的正整数.
∴点坐标只有一种可能(6,4).
(3) 设,与对称轴交点为.
. .
=.
∴当时,有最小值,
总是成立.
举一反三
已知点A(1,1)在二次函数y=x2-2ax+b的图象上.
(1)用含a的代数式表示b;
(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与 x轴平行,O为坐标原点.

(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.
题型:不详难度:| 查看答案
抛物线的顶点坐标是          
题型:不详难度:| 查看答案
已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?
题型:不详难度:| 查看答案
如图,矩形ABCD的顶点A,B在x轴上, CD = 6,点A对应的数为,请写出一个经过A、B两点且开口向下的抛物线解析式:        
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.