已知二次函数y=12x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.(1)求这个二次函数解析式;(2)设D为线段OC上

已知二次函数y=12x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.(1)求这个二次函数解析式;(2)设D为线段OC上

题型:不详难度:来源:
已知二次函数y=
1
2
x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数解析式;
(2)设D为线段OC上的点,满足∠DPC=∠BAC,求点D的坐标.
答案
(1)已知抛物线过A(-3,6),B(-1,0)则有:





9
2
-3b+c=6
1
2
-b+c=0

解得





b=-1
c=-
3
2

∴二次函数的解析式为:y=
1
2
x2-x-
3
2


(2)易知:P(1,-2),C(3,0),
过P作PM⊥x轴于M,
则PM=2,
∵抛物线过C(3,0)和B(-1,0),
∴BC=4,CM=2=PM,
∴∠PCO=45°
同理可求得∠ACB=45°,
∵∠DPC=∠BAC,∠PCO=∠ACB=45°,
∴△DPC△BAC,
DC
BC
=
PC
AC

易求AC=6


2
,PC=2


2
,BC=4
∴CD=
4
3
,OD=3-
4
3
=
5
3

∴D(
5
3
,0).
举一反三
已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒


2
个单位长度的速度由点P向点O运动,过点M作直线MNx轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.
题型:不详难度:| 查看答案
已知二次函数y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.
题型:不详难度:| 查看答案
已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3),
(l)求抛物线的函数关系式;
(2)若点D(4,m)是抛物线y=ax2+bx+c上一点,请求出m的值,并求出此时△ABD的面积.
题型:不详难度:| 查看答案
安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.
题型:不详难度:| 查看答案
如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NPOC,交AC于点P,连接MP,已知动点运动了x秒,△MPA的面积为S.
(1)求点P的坐标.(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值.
(3)当△APM与△ACO相似时,求出点P的坐标.
(4)△PMA能否成为等腰三角形?如能,直接写出所有点P的坐标;如不能,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.