已知二次函数y=ax2+bx+c的图象经过点A(-1,0),B(2,0),C(0,-2),那么这个二次函数的解析式为______.
题型:不详难度:来源:
已知二次函数y=ax2+bx+c的图象经过点A(-1,0),B(2,0),C(0,-2),那么这个二次函数的解析式为______. |
答案
∵二次函数y=ax2+bx+c的图象经过点A(-1,0),B(2,0),C(0,-2), ∴, 解得:, ∴这个二次函数的解析式为:y=x2-x-2. 故答案为:y=x2-x-2. |
举一反三
如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为( )
|
在如图的直角坐标系中,已知点A(1,0);B(0,-2),将线段AB绕点A按逆时针方向旋转90°至AC. (1)求点C的坐标; (2)若抛物线y=-x2+ax+2经过点C. ①求抛物线的解析式; ②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
|
已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA| (1)求抛物线的函数表达式; (2)直接写出直线BC的函数表达式; (3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2). 求:①s与t之间的函数关系式; ②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由. (4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
|
如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB. (1)求该抛物线的解析式; (2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等?若存在,求点Q的坐标;若不存在,说明理由; (3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.
|
如图,已知顶点为P的抛物线y=x2+bx+c经过点A(-3,6),并x轴交于B(-1,0),C两点. (1)求此抛物线的解析式; (2)求四边形ABPC的面S; (3)试判断四边形ABPC的形状,并说明理由.
|
最新试题
热门考点