已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(

已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(

题型:广西自治区中考真题难度:来源:
已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
答案
解:(1)如图1,过点A作AE⊥x轴于点E.在△BCD与△CAE中,
∵∠BCD=∠CAE=90°-∠ACE,∠BDC=∠CEA=90°,
∴△BCD≌△CAE,
∴BD:CE=CD:AE,
∵A(3,4),B(-1,y),C(x,0)且-1<x<3,
∴y:(3-x)=(x+1):4,
(-1<x<3);
(2)y没有最大值.理由如下:

又∵-1<x<3,∴y没有最大值;
(3)如图2,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.
∵A(3,4),∴A′(2,4),
∵B(-1,1),
∴B′(-1,-1).
设直线A′B′的解析式为y=kx+b,则
∴直线A′B′的解析式为
当y=0时,
故线段EF平移至如图2所示位置时,四边形ABEF的周长最小,此时点E的坐标为(,0).
举一反三
如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是
[     ]
(A)    
(B)    
(C)    
(D)
题型:贵州省中考真题难度:| 查看答案
将一根长为16π厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别为r1和r2
(1)求r1与r2的关系式,并写出r1的取值范围;
(2)将两圆的面积和S表示成r1的函数关系式,求S的最小值.
题型:黑龙江省中考真题难度:| 查看答案
某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为x的取值范围为y元。
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?
题型:贵州省中考真题难度:| 查看答案
如图,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3=
y4=-  ,再如 ,可设 ,用同样的方法也可求解.
题型:广西自治区中考真题难度:| 查看答案
如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.
(1)求抛物线对应的函数解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由
题型:贵州省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.