解:(1)设二次函数的解析式为:y=a(x﹣h)2+k ∵顶点C的横坐标为4,且过点(0,) ∴y=a(x﹣4)2+k,=16a+k① 又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k② 由①②解得a=,k=﹣ ∴二次函数的解析式为:y=(x﹣4)2﹣ (2)∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P 设直线x=4与x轴交于点M ∵PM∥OD, ∴∠BPM=∠BDO, 又∠PBM=∠DBO ∴△BPM∽△BDO ∴ ∴ ∴点P的坐标为(4,) (3)由(1)知点C(4,), 又∵AM=3, ∴在Rt△AMC中,cot∠ACM=, ∴∠ACM=60°, ∵AC=BC, ∴∠ACB=120° ①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120°,则∠QBN=60° ∴QN=3,BN=3,ON=10, 此时点Q(10,), 如果AB=AQ,由对称性知Q(﹣2,) ②当点Q在x轴下方时,△QAB就是△ACB, 此时点Q的坐标是(4,), 经检验,点(10,)与(﹣2,)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(﹣2,)或(4,). |