如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点

如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点

题型:湖北省期末题难度:来源:
如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. (注意:本题中的结果均保留根号).
答案
解:(1)过点B作BD⊥x轴于点D,由已知可得:OB=OA=2,∠BOD=60°,
在Rt△OBD中,∠ODB=90°,∠OBD=30°
∴OD=1,DB=
∴点B的坐标是(1,).
(2)设所求抛物线的解析式为y=ax2+bx+c,
由已知可得:
解得:a=,b=,c=0,
∴所求抛物线解析式为y=x2+x.
(3)存在,
由y=x2+x配方后得:y=(x+1)2
∴抛物线的对称轴为x=﹣1
∵点C在对称轴x=﹣1上,△BOC的周长=OB+BC+CO;
∵OB=2,要使△BOC的周长最小,必须BC+CO最小,
∵点O与点A关于直线x=﹣1对称,有CO=CA
△BOC的周长=OB+BC+CO=OB+BC+CA
∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.
设直线AB的解析式为y=kx+b,则有:
解得:k=,b=
∴直线AB的解析式为y=x+
当x=﹣1时,y=
∴所求点C的坐标为(﹣1,),
(4)设P(x,y)(﹣2<x<0,y<0),则y=x2+x①
过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E, 则PQ=﹣x,PG=﹣y,
由题意可得:
S△PAB=S梯形AFEB﹣S△AFP﹣S△BEP
=(AF+BE)﹒FE﹣AF﹒FP﹣PE﹒BE
=(﹣y+﹣y)(1+2)﹣(﹣y)(x+2)﹣(1﹣x)(﹣y)
=
将①代入②, 化简得:S△PAB=﹣x2x+=(x+2+
∴当时,△PAB得面积有最大值,最大面积为
此时
∴点P的坐标为

举一反三
明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独﹣无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系.
(1)求拱形抛物线的函数关系式;
(2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米)
题型:重庆市期末题难度:| 查看答案
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点 _________ (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
题型:重庆市期末题难度:| 查看答案
已知x1,x2是关于x的方程(x﹣2)(x﹣m)=(p﹣2)(p﹣m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
题型:北京期中题难度:| 查看答案
已知抛物线 y=ax2+bx+c经过点A(0,3),B(4,3),C(1,O).求:
(1)该抛物线的解析式;
(2)它的图象的顶点坐标,对称轴方程;
(3)y<0时x的取值范围.
题型:北京期中题难度:| 查看答案
已知抛物线y=ax2经过点A(2,1)
(1)求这个函数的解析式;
(2)写出抛物线上点A关于y轴的对称点B的坐标;
(3)求△OAB的面积;
(4)抛物线上是否存在点C,使△ABC的面积等于△OAB面积的一半?若存在,求出C点的坐标,若不存在,请说明理由.
题型:北京期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.