把函数y=2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 _________ .
题型:同步题难度:来源:
把函数y=2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 _________ . |
答案
y=2(x﹣3)2﹣2 |
举一反三
如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2. (1)求S与x的函数关系式; (2)如果要围成面积为45米2的花圃,AB的长是多少米? (3)能围成面积比45米2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由. |
|
有一座抛物线型拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m. (1)如图所示的直角坐标系中,求出该抛物线的关系式. (2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数关系式. (3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行? |
|
某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角. 设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角). (1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数; (2)求y与x之间的函数关系式; (3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少? |
若将函数y=3x2的图象向左平行移动1个单位,再向下平移2个单位,则所得抛物线的解析式为 |
[ ] |
A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2﹣2 |
已知二次函数的图象与x轴交点的横坐标分别为x1=4,x2=﹣2,且图象经过点(0,﹣4),求这个二次函数的解析式,并求出最大(或最小)值。 |
最新试题
热门考点