如图已知直线L:,它与x轴、y轴的交点分别为A、B两点。(1)求点A、点B的坐标。(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F

如图已知直线L:,它与x轴、y轴的交点分别为A、B两点。(1)求点A、点B的坐标。(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F

题型:广西自治区中考真题难度:来源:
如图已知直线L:,它与x轴、y轴的交点分别为A、B两点。
(1)求点A、点B的坐标。
(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹)。
(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式。
(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B,若存在,求出圆心P的坐标,若不存在,请说明理由。
答案
解:(1)A(,0),B(0,3);
(2)如图:

(3)过点P作PD⊥轴于D,则PD=|x|,BD=|3-y|,
PB=PF=y,
∵△BDP为直角三形,

,即,即
∴y与x的函数关系式为
(4)存在;
∵⊙P与x轴相切于点F,且与直线l相切于点B,





∴x=1或x=-9,
把x=1或x=-9代入,得或y=15,
∴点P的坐标为(1,)或(9,15)。
举一反三
已知一元二次方程x2+px+q+1=0的一根为2。
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式。
题型:广东省中考真题难度:| 查看答案
如图,直线l与x轴、y轴分别交于点M(8,0),点N(0,6),点P从点N出发,以每秒1个单位长度的速度沿N→O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动,已知点P、Q同时出发,当点Q达点M时,P、Q两点同时停止运动,设运动时间为t秒。
(1)设四边形MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围。
(2)当t为何值时,PQ与l平行。
题型:广西自治区中考真题难度:| 查看答案
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D。
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C。
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标。
题型:广西自治区中考真题难度:| 查看答案
如图(1),抛物线y=ax2-3ax+b经过A(-1,0),C(3,-2)两点,与y轴交于点D,与x轴交于另一点B。
(1)求此抛物线的解析式;
(2)若直线y=kx+1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图(2),过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥x轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标。


(1)                                         (2)

题型:广西自治区中考真题难度:| 查看答案
如图,已知抛物线交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)。
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.