如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿

如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿

题型:不详难度:来源:
如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.

(1)证明△AMF是等腰三角形;
(2)当EG过点D时(如图(3)),求x的值;
(3)将y表示成x的函数,并求y的最大值.
答案
(1)由条件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE与△BFE关于EF对称可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,从而得出结论。
(2)
(3)
解析

分析:(1)由条件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE与△BFE关于EF对称可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,从而得出结论。
(2)当EG过点D时在Rt△EDC中由勾股定理建立方程求出其解即可。
(3)分情况讨论当点G不在梯形外时和点G在梯形之外两种情况求出x的值就可以求出y与x之间的函数关系式,在自变量的取值范围内就可以求出相应的最大值,从而求出结论。
解:(1)证明:如图(1),∵EF∥AD,∴∠A=∠EFB,∠GFE=∠AMF。
∵△GFE与△BFE关于EF对称,∴△GFE≌△BFE。∴∠GFE=∠BFE。
∴∠A=∠AMF。∴△AMF是等腰三角形。
(2)如图,作DQ⊥AB于点Q,

∴∠AQD=∠DQB=90°。∴AB∥DC。∴∠CDQ=90°。
又∵∠B=90°,∴四边形CDQB是矩形。
∴CD=QB=2,QD=CB=6,∴AQ=10﹣2=8。
在Rt△ADQ中,由勾股定理得AD=10。
∴tan∠A=。∴
如图3,∵EB=x,∴FB=x,CE=6﹣x。∴AF=MF=10﹣x。
∴GM=。∴GD=。∴DE=
在Rt△CED中,由勾股定理得,解得:
∴当EG过点D时
(3)当点G在梯形ABCD内部或边AD上时,
当点G在边AD上时,易求得x=
∴当0<x时,
∴当x=时,y最大值为
当点G在梯形ABCD外时,
∵△GMN∽△GFE,∴,即
整理,得
由(2)知,,∴当时,

当x=5时,y最大值为
,∴当x=5时,y最大值为
综上所述,y关于x的函数为,y最大值为
举一反三
如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于
A.600B.700C.800D.900

题型:不详难度:| 查看答案
一个多边形的每个内角均为108°,则这个多边形是
A.七边形B.六边形C.五边形D.四边形

题型:不详难度:| 查看答案
如图,下列条件中,可以判断AB∥CD的是 (    )
A.B.C.D.

题型:不详难度:| 查看答案
如图,直线AB与直线CD相交于点O,OEAB,垂足为O,若,则的度数是_____________

题型:不详难度:| 查看答案
如图,AD//BC,,AC平分,求的度数。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.