在△ABC中,点D、E、F顺次在边AB、BC、CA上,设AD=p•AB,BE=q•BC,CF=r•CA,其中p、q、r是正数,且使p+q+r=23,p2+q2+

在△ABC中,点D、E、F顺次在边AB、BC、CA上,设AD=p•AB,BE=q•BC,CF=r•CA,其中p、q、r是正数,且使p+q+r=23,p2+q2+

题型:不详难度:来源:
在△ABC中,点D、E、F顺次在边AB、BC、CA上,设AD=p•AB,BE=q•BC,CF=r•CA,其中p、q、r是正数,且使p+q+r=
2
3
p2+q2+r2=
2
5
,则S△DEF:S△ABC=______.
答案
如图:
∵AD=p•AB,BE=q•BC,CF=r•CA,
∴S△ADF=(1-r)•p•S△ABC,S△BDE=(1-q)•r•S△ABC,S△EFC=(1-p)•q•S△ABC
∴S△DEF=S△ABC-S△ADF-S△BDE-S△EFC=[1-(1-r)•p-(1-q)•r-(1-p)•q]•S△ABC=[1-(p+q+r)+(pr+qy+pq)]•S△ABC
∵(p+q+r)2=(p2+q2+r2)+2(pr+qr+pq),p+q+r=
2
3
,p2+q2+r2=
2
5

∴pr+qr+pq=
1
2
[(p+q+r)2-(p2+q2+r2)]=
1
45

∴S△DEF=(1-
2
3
+
1
45
)•S△ABC=
16
45
S△ABC
∴S△DEF:S△ABC=16:45.
故答案为:16:45.
举一反三
如图,是一个食品包装盒的表面展开图.
(1)请写出这个包装盒的多面体形状的名称;
(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)
题型:不详难度:| 查看答案
如图,长方体中J为棱EF上一点,三角形EHJ与三角形JFB的面积都是50平方厘米,四边形BCGF的周长为24厘米,长方体的体积是______立方厘米.
题型:不详难度:| 查看答案
将一个长为a,宽为b的矩形分为六个相同的小矩形,然后在矩形中画出形如字母M的图形,记字母M的图形面积为S,则S=______.
题型:不详难度:| 查看答案
已知实数a,b,c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0.
(1)求a,b,c的值,并在平面直角坐标系中,描出点A(0,a),B(b,0),C(b,c)三点;
(2)如果在第二象限内有一点P(m,1),请用含m的式子表示三角形POA的面积;
(3)在(2)的条件下,是否存在一点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
阅读下面资料:
小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.
小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=2AB,B1C=2BC,C1A=2CA,根据等高两三角形的面积比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此继续推理,从而解决了这个问题.

(1)直接写出S1=______(用含字母a的式子表示).
请参考小明同学思考问题的方法,解决下列问题:
(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.
(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.