如图: ∵AD=p•AB,BE=q•BC,CF=r•CA, ∴S△ADF=(1-r)•p•S△ABC,S△BDE=(1-q)•r•S△ABC,S△EFC=(1-p)•q•S△ABC, ∴S△DEF=S△ABC-S△ADF-S△BDE-S△EFC=[1-(1-r)•p-(1-q)•r-(1-p)•q]•S△ABC=[1-(p+q+r)+(pr+qy+pq)]•S△ABC, ∵(p+q+r)2=(p2+q2+r2)+2(pr+qr+pq),p+q+r=,p2+q2+r2=, ∴pr+qr+pq=[(p+q+r)2-(p2+q2+r2)]=, ∴S△DEF=(1-+)•S△ABC=S△ABC, ∴S△DEF:S△ABC=16:45. 故答案为:16:45.
|