(1)在四边形AFHE中,∠AFH=∠AEH=90°,∠BAC=70°, ∴∠BHC=∠FHE=360°-(∠AFH+∠AEH+∠BAC), =360°-250°, =110°; 或∠BHC=∠HEC+∠ACH=90°+(90°-∠FAC)=180°-70°=110°;
(2)∵∠ACF=∠HCE,∠AFC=∠HEC=90°, ∴△ACF∽△HCE, ∴=,或AF•HC=HE•AC;
(3)由(1)得∠BHC=360°-(90°+90°+∠BAC), =180°-∠BAC, 又∵HG平分∠BHC, ∴∠GHC=∠BHC=90°-∠BAC, ∠DKH=∠AKF=90°-∠FAK=90°-∠BAC, ∴∠GHC=∠DKH, ∴HG∥AD. |