(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点,若∠AMN=90°,求证:AM=MN

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点,若∠AMN=90°,求证:AM=MN

题型:同步题难度:来源:
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点,若∠AMN=90°,求证:AM=MN。下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明。
证明:在边AB上截取AE=MC,连ME。正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴∠NMC=180°-∠AMN--∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE。
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由。
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN=_____°时,结论AM=MN仍然成立。(直接写出答案,不需要证明)

答案
解:(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中,∵
∴△AEM≌△MCN,
∴AM=MN。
(2)仍然成立
在边AB上截取AE=MC,连接ME
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°
∵AE=MC,
∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM
∴△AEM≌△MCN
∴AM=MN。
(3)
举一反三
如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点,已知两底差是6,两腰和是12,则△EFG的周长是

[     ]

A.8
B.9
C.10
D.12
题型:同步题难度:| 查看答案
如图,四边形ABCD是等腰梯形,AD∥BC,点E,F在BC上,且BE=CF,连接DE,AF,求证:DE=AF。

题型:同步题难度:| 查看答案
如图,△ABC中,∠ABC=45°,AD⊥BC于D,点E在AD上,且DE=CD。求证:BE=AC。

题型:模拟题难度:| 查看答案
如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图(1)的位置时,求证: ①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE =AD-BE;
(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有 怎样的等量关系?请写出这个等量关系,并加以证明。
题型:河北省同步题难度:| 查看答案
如图,已知:∠CAB=∠DBA,AC=BD。求证:AD=BC。

题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.