如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长。

如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长。

题型:江苏省期末题难度:来源:
如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长。

答案
解:在Rt△AEF和Rt△DEC中,
∵EF⊥CE,
∴∠FEC=90°,
∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,
∴∠AEF=∠ECD,
又∠FAE=∠EDC=90°,EF=EC,
∴Rt△AEF≌Rt△DCE,
AE=CD,
AD=AE+4,
∵矩形ABCD的周长为32cm,
∴2(AE+AE+4)=32,
解得,AE=6(cm)。
举一反三
四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点。
如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点。
(1)如图2,画出菱形ABCD的一个准等距点;
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法);
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF,求证:点P是四边形ABCD的准等距点。
题型:江苏省期末题难度:| 查看答案
如图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=28,AC=38,求MN的长。

题型:江苏省期末题难度:| 查看答案
如图,在梯形ABCD中,AD∥BC,M、N分别是两条对角线BD、AC的中点,说明:MN∥BC且MN=(BC-AD)。
题型:期末题难度:| 查看答案
(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°。求证:BE=CF;
(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4。求GH的长;
(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4,直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示)。
题型:期末题难度:| 查看答案
如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点,
(1)求证:MB=MD;
(2)求证:ME=MB。

题型:江苏省期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.