连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE,所以BH=BE+HE. 解:连结GE交AD于点N,连结DE,如图,
∵正方形AEFG绕点A逆时针旋转45°, ∴AF与EG互相垂直平分,且AF在AD上, ∵AE=, ∴AN=GN=1, ∴DN=4﹣1=3, 在Rt△DNG中,DG==; 由题意可得:△ABE相当于逆时针旋转90°得到△AGD, ∴DG=BE=, ∵S△DEG=GE•ND=DG•HE, ∴HE==, ∴BH=BE+HE=+=. 故答案为:. |