已知,如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN

已知,如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN

题型:辽宁省中考真题难度:来源:
已知,如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
答案
证明:(1)∵四边形ABCD是平行四边形,
∴∠DAB=∠BCD,
∴∠EAM=∠FCN,
又∵AD∥BC ,
∴∠E=∠F,
∵AE=CF,
∴△AEM≌△CFN;
(2)由(1)得AM=CN,
又∵四边形ABCD是平行四边形,
∴ABCD,
∴BMDN,
∴四边形BMDN是平行四边形.
举一反三
如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为
[     ]
A.2和3
B.3和2
C.4和1
D.1和4
题型:四川省中考真题难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于(    )
题型:山东省中考真题难度:| 查看答案
已知:点P是□ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F,求证:AE=CF。
题型:湖南省中考真题难度:| 查看答案
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,□ABCD中,若AB=1,BC=2,则□ABCD为1阶准菱形.
(1)判断与推理:①邻边长分别为2和3的平行四边形是 _________ 阶准菱形; ②小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.
(2)操作、探究与计算:①已知□ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出□ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知□ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出□ABCD是几阶准菱形.
题型:浙江省中考真题难度:| 查看答案
以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是[     ]
A.(3,3)        
B.(5,3)      
C.(3,5)        
D.(5,5)
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.