如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接CF.(1)求证:四边形ABDF是平行四边形;(2)若∠CAF

如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接CF.(1)求证:四边形ABDF是平行四边形;(2)若∠CAF

题型:不详难度:来源:
如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接CF.
(1)求证:四边形ABDF是平行四边形;
(2)若∠CAF=45°,BC=4,CF=,求△CAF的面积.

答案
(1)证明见解析;(2)3.
解析

试题分析:(1)根据平行四边形的定义即可证得.
(2)由平行四边形的性质得AF=BD=2,过点F作FG⊥AC于G点,从而由等腰直角三角形的性质得AG=GF=,在Rt△FGC中应用勾股定理求得GC的长,即可得AC=AG+GC=,从而求得△CAF的面积.
试题解析:(1)∵点D、E分别是边BC、AC的中点,∴DE∥AB.
∵AF∥BC,
∴四边形ABDF是平行四边形.
(2)如图,过点F作FG⊥AC于G点.
∵BC=4,点D是边BC的中点,∴BD=2.
由(1)可知四边形ABDF是平行四边形,∴AF=BD=2.
∵∠CAF=45°,∴AG=GF=.
在Rt△FGC中,∠FGC=90°, GF=,CF=
∴GC=.
∴AC=AG+GC=.
.

举一反三
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合.若BC=3,则折痕CE的长为_____________________.

题型:不详难度:| 查看答案
如图,点A、C、D、B四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.

题型:不详难度:| 查看答案
如图,在△ABC中,D为AB边上一点、F为AC的中点,过点C作CE//AB交DF的延长线于点E,连结AE.
(1)求证:四边形ADCE为平行四边形.
(2)若EF=2,求DC的长.

题型:不详难度:| 查看答案
如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)求证:AC=CD.
(2)若AC=2,AO=,求OD的长.

题型:不详难度:| 查看答案
(1)如图1,点E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,连接EF,
则EF、BE、FD之间的数量关系是:EF=BE+FD.连结BD,交AE、AF于点M、N,且MN、BM、DN满足,请证明这个等量关系;
(2)在△ABC中, AB=AC,点D、E分别为BC边上的两点.
①如图2,当∠BAC=60°,∠DAE=30°时,BD、DE、EC应满足的等量关系是__________________;
②如图3,当∠BAC=,(0°<<90°),∠DAE=时,BD、DE、EC应满足的等量关系是____________________.【参考:

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.